如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵.

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/03 08:38:51
如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵.
线性代数证明:在n维向量空间中,如果a1,a2,…an线性无关,则任一向量b可以由a1,a2…an表示

反证,若存在b不能由a1-n先行表示,则b同a1-n这n+1个向量线性无关,线性空间中极大线性无关组中包含的向量个数N>=n+1>n,与题设中“n维向量空间”矛盾,后者与“极大线性无关组包含向量个数为

如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵

证明:因为任一个n维非零向量都是n阶矩阵A的特征向量,所以n维基本向量组ε1,ε2,...,εn也是A的特征向量.设Aεi=kiεi,i=1,2,...,n则A(ε1,ε2,...,εn)=(Aε1,

证明:如果任一个n维非零向量都是n阶矩阵A的特征向量,则A是一个数量矩阵.

设v是n阶矩阵A的特征值由题意矩阵特征值对应的线性无关特征向量的个数和是n说明:1)矩阵可对角化2)A满秩由于特征向量空间的维数和是n那么其中一最大线性无关组是e1..en;e1..en是单位矩阵的列

关于线性代数的问题:若任一n维非零向量都是n阶矩阵A的特征向量,为什么A就有n个线性无关的特征向量呢?求亲们解释.

既然任何一个n维非零向量都是A的特征向量那么把n阶单位阵的每一列都取出来,这n个向量线性无关,并且都是A的特征向量再问:懂起了,谢谢老师!

如果A是一个反对称矩阵:A'=-A,则对任一个n维向量X,都有X'AX=(X'AX)'.这是为什么呢?

是这样子:根据已知,X是n*1的,A是n*n的,X'是1*n的X'AX是一个1*1的矩阵,即一个数它的转置就等于它本身即有(X'AX)'=X'AX再由(X'AX)'=X'A'X=-X'AX即得X'AX

n阶矩阵的所有特征值的重数相加一定为n,任一特征值的特征向量的个数等于它的重数,那任一矩阵不就一定有n个线性无关的特征向

代数重数还是几何重数再问:代数再答:代数重数和为n什么意思?n阶矩阵有n个特征值特征值和为矩阵对角元之和麻烦把问题说清楚再问:这n个特征值中会有相等的,那么有几个相等的就叫几重特征值再答:代数重数是针

为什么任一n维非零向量都是A的特征向量 A就有n个线性无关的特征向量

这不很显然么?n维空间的维数既然是n,根据维数的定义,肯定有n个线性无关的向量.既然任意一个n维的都是它的特征向量,那么这n个线性无关的向量也必然是,所以它肯定有n个线性无关的特征向量再问:能不用向量

命题:若任何一个n维非零向量都是矩阵A的特征向量,则A有n个线性无关的特征向量.为什么

这是线性代数里的题目.是这样子的:你可以取n维单位向量组,即可得证.再问:我不明白的地方就是:如何由“一个n维非零向量都是矩阵A的特征向量”推导出“A有n个线性无关的特征向量”,具体是什么推导过程??

设a1,a2,a3...an为一组n维向量,证明这n个向量线性无关的充要条件是任一n...

必要条件:任意(n+1)个n维向量必线形相关即任意n维向量b都可以由a1,a2,a3...an线性表出.充分条件:显然

一个定理的证明如果Fn中的 n 个向量α 1 ,α 2 ,…,α n 线性无关,则 Fn中的任一向量α可由α,α,…,α

用面积解,三边与对应的距离之积的和就是三角形面积的两倍,若中间一点到一顶点的连线与这一点到顶点对边的垂线为一直线,2S=AXB=AX(H-C)=AXH-AXC,三式相加,可得到三边的距离与边的积的和是

任一n维向量可以由n维向量组α1.α2.…αn线性表出.证明α1.α2.…α

是证线性无关吧!证明:由已知任一n维向量可以由n维向量组α1,α2,…,αn线性表出所以n维基本向量组ε1,ε2,...,εn可由α1,α2,…,αn线性表出.而任一n维向量可由ε1,ε2,...,ε

证明:在n维向量空间中,如果α1.α2...αn线性无关,则任一向量β可以由α1.α2...αn线性表示

在n维向量空间中,任意n+1个向量线性相关,所以α1.α2...αn,β线性相关,设:c1*α1+c2*α2...+cn*αn+c*β=0(其中c1,…cn,c不全为0)若c=0,则可得α1.α2..

如果m、n为实数,a是非零向量,那么ma、na、ma+na都是向量

对!m、n等于0时,ma、na、ma+na也是向量,零向量!

如果任一个n维非零向量都是n阶矩 阵A的特征向量,则A是一个数量 矩阵

都可以但任一向量表示为基本向量组的线性组合时,组合系数即向量的分量这是一个很好用的特点这并没失去一般性

证明:设A是一个n阶方阵,如果对任一个n维向量x,都有Ax=0,那么A=0

证法一由于有关系式(A的秩)+(Ax=0的解空间维数)=n现在依照题意,Ax=0的解空间是整个空间,即(Ax=0的解空间维数)=n所以A的秩是零,因此A=0证法二(反证)设A≠0,则A的某个元素a(i

设A为m*n矩阵,证明:若任一个n维向量都是AX=0的解,则A=0

任取n个线性无关的n维列向量b1、…、bn,令B=(b1,…,bn),则B是可逆矩阵.因为Abi=0,所以AB=0,两边右乘B^(-1),可得A=0.再问:是n维行向量吧再答:是n维列向量,n维列向量

设A为m×n矩阵,证明:若任一n维向量都是AX=0的解,则A=0

由题意,n阶单位矩阵的n个列向量e1,e2,……,en都是Ax=0的解,而Aei就是A的第i个列向量,所以A=0

证明:A是反对称矩阵,当且仅当对任一个n维向量X,有X'AX=0.

A是反对称阵,则x'Ax=(x'Ax)'=x'A'x=-x'Ax,故x'Ax=0.反之,取x=ei,ei是单位阵的第i列,代入可知A的对角元是0.(注意ei'Aej=aij).再取x=ei+ej,则有

任意非零n维向量都是n阶数量矩阵A的特征向量 为什么

数量矩阵A即主对角线上元素相同,其余元素为0的方阵即kE.对任意非零n维向量x,Ax=kEx=kx所以x是A的属于特征值k的特征向量.

为什么n个线性无关的n维向量都是Rn的一组基?

因为Rn中的任意一向量均可由这n个线性无关的n维向量线性表出,故它是Rn的一组基.下面证明这一事实,设X是Rn中的任意一向量,a1,a2,...,an是n个线性无关的n维向量,由Rn中任意n+1个向量