光滑圆锥底角为90°小球质量为m=0.5kg,在圆锥内某水平面内做匀速圆周运动

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/08 15:52:32
光滑圆锥底角为90°小球质量为m=0.5kg,在圆锥内某水平面内做匀速圆周运动
如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,质量为m的小球紧贴着内壁在图中所示的水平面内做匀速圆周

有圆锥的锥角度数吗?或者小球做匀速圆周运动的半径.现在看来好像是条件不够.再问:角度为α再答:G=mgN的竖直分力=mgN的水平分力提供向心力

一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量均为m的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,A、

第一问1:1第二问(根号2):1第三问1:(根号2)第一问由于两小球竖直方向上没有位移,所以竖直方向合力为零,支持力竖直方向分力与重力平衡,所以两个小球受的支持力都为mg/cosa,所以向心力mgta

如图所示,一固定的光滑竖直杆上套有一质量为m的小球A

1)当A到达与滑轮同高度时,由于A在水平上没有移动,此时B速度为零,即动能为零,但势能降低了mgL+(2^0.5-1)*L*2mg=1/2mV^2V=((2*2^0.5-1)*gL)^0.5=1.35

如图所示,在光滑的圆锥顶端,用长为L=2m的细绳悬一质量为m=1kg的小球,圆锥顶角为2θ=74°.求:(1)当小球ω=

这个题涉及小球运动状态的分析.先这样想象一下,让小球的角速度从零开始逐渐增加,想象这一过程中小球会发生什么状况.明显的当小球的速度很小时,小球肯定是沿着圆锥运动的,即小球和圆锥间有作用力;而当小球的角

质量为M的小球在光滑漏斗壁内沿水平方向做匀速圆周运动,漏斗的底角为2a,圆轨道半径为R,重力加速度为g.求:1.漏斗壁对

弹力:mgcos2a加mv^2sin2a/r,速度可由mgsin2a=mv^2cos2a/r解得,解题思路,在沿壁上重力的分力与向心力的分力相等就可解出速度,周期自己算

如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥

(1)小球受到重力mg、绳的拉力T和锥面的支持力N,如图所示.根据牛顿第二定律得:  Tsinθ-Ncosθ=mω2Lsinθ ①  Tcosθ+Ns

质量为M的楔形物块上有圆弧轨道,静止在光滑的水平面上.质量为m的小球以速度v1向物块运动.不计一切摩擦,圆弧小于90°且

系统水平方向动量守恒,全过程机械能也守恒.以向右为正方向,在小球上升过程中,由水平方向系统动量守恒得:mv1=(M+m)v′,由机械能守恒定律得:12mv12=12(M+m)v′2+mgH,解得:v=

宇航员到了某星球后做了如下实验:如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角2θ.当圆锥和球一起

(1)小球做圆周运动,线的拉力在水平方向的分力提供向心力 Fsinθ=m4π2T2r又因为半径r=Lsinθ解得线的拉力F=m4π2T2L(2)线的拉力在竖直方向的分力与重力平衡,即Fcos

在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2Q,当圆锥和球一起以角速度w匀速转动时

1.以斜面为x轴正交分T+(mLsinQw^2)*sinQ=mgcosQT=……2.无支持力,拉力重力的合力提供向心力,mLsinQw^2=mgtanQw至少为……

质量为M的光滑圆槽水平面上圆槽内放一质量为m的小球,如图.

隔离受力分析:设圆槽水平面无摩擦,圆槽水平受力做匀加速运动,F-f=Ma,f是小球对圆槽水平方向作用力.小球受重力,小球相对于圆槽静止,说明小球以与圆槽相同的加速度向右运动,圆槽对小球的压力,此二力的

如图所示,小球从光滑斜面滚下来,已知小球质量为m,斜面长为S,高为h.

(1)W=Gh=mgh(2)由题意可知,W=Ek,所以mgh=1/2mv平方,所以v=√2gh

如图所示,小球被轻质细绳系住吊着放在静止光滑斜面上,设小球质量为m=根号3kg,斜面倾角为30°,

(1)正交分解法FSinα=NSinθFCosα+NCosθ=mg(2)f=NSinθf 地面给M的摩擦,方向向左再问:能告诉我最终答案吗?谢谢!再答:α我没有确定是多少再问:30°再答:那

如图所示,光滑的倾斜轨道与半径为R的光滑圆形轨道相连接,质量为m的小球,

(1)要使小球恰能通过圆形轨道的最高点,需有mV²/r=mg①根据动能定理mgH-mg(2r)=1/2mV²②由①②式得H=2.5r③(2)令最低点速度为v1,则由动能定理1/2m

质量为m的小球,速度大小为v,其方向与光滑壁面的夹角为30°.小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为

A两种解法,一种简单的,直接把碰前的矢量和碰后的矢量通过平移把起点放在一起,刚好形成一个等边三角形,第三边就是动量增量,大小为mv,方向向左.一种稍微复杂一点的,分解,y方向上增量为零,x方向上动量分

如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量

(1)设细线中的张力为T,对小球和小物块各自受力分析:根据牛顿第二定律得:对M:Mg-T=Ma对m:T-mgsin30°=ma且M=km解得:a=2k-12(k-1)g(2)设M落地时的速度大小为v,

如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量

楼主没分清正负功?(Mg-mgsin30)XL/2=1/2(m+M)v^2-mgxL/4=1/2mv0^2-1/2mv^2应该是这么个样子再问:(Mg-mgsin30)XL/2=1/2(m+M)v^2

如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置,将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量

因为此时是将M和m看做一个整体,等式左边是合力,右边理应是整体的质量乘以加速度再问:这个列式的意思是对m受力分析得出的啊,怎么会是对整体?还有绳的拉力等于Mg吗再答:要是采用隔离法解答的话,先对m受力

质量为2m的小球a从倾角为30°的光滑固定斜面的顶端无初速下滑,同时将质量为m的小球b从斜面顶端等高处以初

答案:CA,.a、b两球同时到达地面,斜面运动时间长,ta=2tbA错B.a丶b落地前的速度相同,初始机械能不等,当落地时势能相等,则动能必不相等,则速度不等.B错C.到达地面过程中,重力对a丶b做工

如图所示,在光滑的锥顶端用长为L的细绳悬有一质量为m小球,圆锥的顶角为2θ,当圆锥和球一起以角速度ω匀速旋转时,球紧压锥

参考图:球紧压锥面,此时绳的张力为小球重力在细绳方向的分量(图一):mgCosθ若要小球离开锥面,细绳和离心力的合力要=小球重力(图二)即:(mω^2LSinθ)Cotθ=mg(半径r=LSinθ)解

q如图,质量为m,半径为R的光滑半圆弧物快静止在光滑水平面上,有一质量为m的小球

由能量守恒可知,物体m减少的势能等于m和半圆弧物块增加的动能,即mgR=1/2mV.平方+1/2mV..平方再由动量守恒(因为没外力做工,所以动量守恒)mV.=mV..可解得V.=V..=根号gR物块