r(AB)>=ra rb-n

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/08 02:58:05
r(AB)>=ra rb-n
怎么证明R(AB)>=R(A)+R(B)-N

本题被称为薛尔福斯特公式,是Frobenius不等式的特殊情形,就是那里令B=E,我之前回答过http://zhidao.baidu.com/question/338678441.html?oldq=

线性代数 AB=0 为什么说r(B)小于等于 n-r(A)

利用了以下结论:1、n元齐次线性方程组Ax=0的基础解系中的向量个数是n-r(A),也就是基础解系的秩是n-r(A);2、向量组I由向量组II线性表示,则向量组I的秩小于等于向量组II的秩.根据AB=

若A是m*n矩阵,B是n*s矩阵,若AB=0,则r(A)+r(B)

考虑两个线性空间:(1)B的列空间,即B的各列向量张成的线性空间.它的维数即是B的列秩,等于B的秩,即r(B).(2)Ax=0的解空间,即Ax=0的所有解组成的线性空间.由基本定理,它的维数=n-r(

设A是m*n矩阵,B是n*m矩阵,证明:若r(A)=n,则r(AB)=r(B).

如果r(A)=n结合r(A)=n此外,又知道r(B)

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设A是m×n的矩阵,B是n×p的矩阵,证明:若R(A)=n,R(AB)=R(B)

因为R(A)=n那么取A中n行构成A的基CC的大小是n*n设R(B)=y同理取B的基DD的大小是n*y因为R(C*D)=R(D)=R(B);所以R(AB)=R(B);

高等代数r(AB)>=r(A)+r(B)-n的一种证明

就是证明的记号有点乱,方法是对的,重新整理如下:设A是m×n矩阵,B是n×k矩阵,求证r(AB)≥r(A)+r(B)-n.设r(A)=s,D为A的相抵标准形.可知存在m阶可逆阵P与n阶可逆阵Q使PAQ

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

AB=0,证明r(A)+r(B)小于或等于N

用秩的不等式r(A)r(B)-n

设A,B都是N阶矩阵,且AB=0,证明R(A)+R(B)〈=N

AB=0表示B的列都属于Ker(A),那么r(A)+r(B)

A,B是n阶矩阵,且A是满秩矩阵,为什么R(AB)=R(B)?

A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)

设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r

证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以

证明矩阵中r(Em-AB)+n=r(En-BA)+m

大概是用等价标准型来证.其实我不太清楚,不过你可以看看这个网址:里面的例10,仿照他的方法应该就行了.

设ABC分别为m*n,n*s,s*m矩阵,且r(CA)=r(A),证明r(CAB)=r(AB)

证明:显然,Ax=0的解是CAx=0的解由已知r(A)=r(CA)所以Ax=0与CAx=0同解.又显然ABx=0的解是CABx=0的解反之.设x1是CABx=0的解则CABx1=0所以Bx1是CAx=

AB=0,证明:r(a)+r(b)≤n

设B=(b1,b2,b3,.bl),则A(b1,b2,b3,.bl)=(0,0,0.),(假设A为m行n列,B为n行l列)即Abi=0,(i=1,2,3...l),即矩阵B的l个列向量都是齐次方程Ax

设AB是n级矩阵,AB=0.证明R(A)+R(B)

作2n级矩阵:EnO初等EnO最En-BOAB变换AAB后AO2n级矩阵的秩为n.设R(A)=sR(B)=t则A中有s个线性无关的行向量,B中有t个线性无关的行向量.这个2n级矩阵的前n行至少有t个线

设A,B分别为m*n,n*t矩阵,求证:若r(A)=n.则r(AB)=r(B) 若r(B)=n,则r(AB)=r(A)

若R(B)=n,则显然有t>=n说明B的行秩为nB能通过初等列变换,变为[E,0]形式其中E是n阶单位方阵就是说存在可逆的Q,合B=[E,O]QAB=A[E,O]Q=[A,0]Q即R(AB)=R([A

A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)

这是个错误结论试想,B是零矩阵,怎么会有R(AB)=R(A)!可逆矩阵才不改变乘积矩阵的秩