p1 p2分别是矩阵A的属于特征值的特征向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/15 14:40:31
p1 p2分别是矩阵A的属于特征值的特征向量
设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2

设k1b1+k2b2+k3b3=0(1)等式两边左乘A得k1Ab1+k2Ab2+k3Ab3=0由已知Ab1=a1b1,Ab2=a2b2,Ab3=a2b3所以k1a1b1+k2a2b2+k3a2b3=0

矩阵的特征值问题设三阶实对称矩阵的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A属于λ1的一个特征向

一般来讲,如果(λ,x)是A的一个特征对,那么(f(λ),x)一定是f(A)的一个特征对这里f(t)=t^5-4t^3+1,B的特征值就是f(1)=-2,f(2)=1,f(-2)=1,对应的特征向量分

设3阶实对称矩阵A的特征值分别是1,2,-2,a=(1,-1,1)'是A属于特征值1的一个特征向量,如何求出另外2个特征

很简单,实对称矩阵的不同的特征值的特征向量正交,也就是说你假设另外两个特征向量分别为(x1,x2,x3)和(y1,y2,y3),则1*x1+-1*x2+1*x3=0,1*y1+-1*y2+1*y3=0

矩阵A的特征多项式怎么求出来的.

再问:我看例题都是直接给出了因式。有什么技巧吗?再答:这个就是按照行列式的计算技巧计算就可以的

解答以下线性代数题设A为三阶矩阵,有三个不同的特征a1,a2,a3,b1,b2,b3依次是属于特征值a1,a2,a3的特

因为对任意x都有(A^3-A)x=0所以A^3-A=0设λ是A的特征值则λ^3-λ是A^3-A=0的特征值所以λ^3-λ=0所以λ(λ-1)(λ+1)=0所以A的特征值只能是0,1,-1由已知A有3个

已知矩阵P的逆阵*A*P=对角矩阵(6 2 2)a1是矩阵A属于特征值6的特征向量,a2和a3是矩阵A属于特征值2的线性

答案是C特征值与特征向量必须一一对应,所以1和4就可以排除了(因为a3是属于特征值2的向量,却对应到6上面去了)又:相同特征值的特征向量的线性组合仍为这个特征向量,所以a2-a3仍是特征向量,但是不同

设矩阵A,B属于复数域上的n维矩阵,A,B可交换,即AB=BA,证明A的特征子空间一定是B的不变子空间

对A的属于特征值λ的特征子空间Vλ中的任一向量x有Ax=λx所以A(Bx)=BAx=λBx所以Bx属于Vλ所以A的特征子空间Vλ是B的不变子空间.

设A是n阶矩阵,a,b是A的两个不同的特征值,x,y是A的分别属于a,b的特征向量,证明:x+y不是A的特征向量

假设x+y是A的属于特征值r的特征向量.则A(x+y)=r(x+y)又Ax=axAy=by所以A(x+y)=ax+by所以ax+by=r(x+y)(a-r)x+(b-r)y=0(零向量)因为x,y非零

P1,P2分别是线段AB,BA的黄金分割点,且P1P2=a,则AB的长为:_____.(最好有图,求详解)

因为P1,P2是黄金分割,所以AP2=BP1=(√5-1)/2AB,所以P1P2=2AP2-AB即a=(√5-1)AB-AB解得AB=(√5+2)a

关于矩阵对角化的问题既然n阶矩阵A可以对角化的充要条件是A有n个现行无关的特征向量.我们也知道属于不同特征值得特征向量线

问题的关键在于:(1)普通矩阵也许可以对角化,但属于不同特征值的特征向量不一定彼此正交,换句话说,你不一定能取到一组标准正交基,使得原来的线性变换在这组基下的矩阵是对角矩阵,所以对于普通矩阵只能相似对

设a1,a2是n阶矩阵A的分别属于r1,r2的特征向量,且r1不等于r2,证明a1+a2不是A的特征向量

反证法:设a1+a2是对应x的特征向量,则A(a1+a2)=x(a1+a2),于是r1a1+r2a2=xa1+xa2,即(r1--x)a1+(r2--x)a2=0.属于不同特征值的特征向量必无关,故r

线性代数问题,求教若a是A的属于特征值k的特 征向量,则a不一定是下面哪个矩阵的特征 向量():A:(A+E)^2 B:

A不一定对啊.来一发反例:(11;11),在A选项变成了(63;63),前一个有特征向量(1,-1)^T,在后一个显然不是.B、C肯定是对的,转置、伴随过程中特征值都是不变量再问:����������

特征矩阵是正交矩阵的矩阵是不是一定是实对称矩阵?

我记得应该是特征向量正交和规范矩阵是充要关系.不一定是实对称.当然反过来是对的(谱分解定理)

设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关

反证吧:假设线性相关,设k*a1=a2(k不等于0)入1*a1=A*a1入2*a2=A*a2=A*(k*a1)=k*(A*a1)=k*入1*a1得到a1=入2/(k*入1)*a2最初我们假设a1=a2

设A是n阶可逆实数矩阵,证明A(AT)的特征根大于0.AT是A的转置矩阵

就是证明AA^T是正定阵即可.因为对任意的n维列向量x,有x^T(AA^T)x=(A^Tx)^T(A^Tx)>=0,且等号成立的充要条件是A^Tx=0,而A可逆,即A^T可逆,因此等号成立的充要条件是

高等代数矩阵二次型知道一个矩阵A,求可逆矩阵P,使得PTAP 为对角矩阵.则可以先求出A的特征根,以及分别对应各个根的特

对于二次型,矩阵A都是要求为实对称矩阵.实对称矩阵可以对角化,就是说,存在可逆矩阵P,使得P^{-1}AP为对角矩阵,这里P^{-1}表示P的逆矩阵.具体求法就如你所说,先求出A的特征根,以及分别对应

设A是一个3阶实对称矩阵 ,证明A的特征根都是实根

如果λ是A的特征值,x是其特征向量,即Ax=λx左乘x^H(x的共轭转置)得到λ=(x^HAx)/(x^Hx),分子和分母都是实数

设n阶矩阵A满足A的平方等于E,证明A的特征只能是正负一.

设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1

设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )

C再问:no是A再答:sorryA可对角化时是k=3,A不可对角化时k≤3

A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.若k1+k2仍为特征向

设k1α1+k2α2是A的属于特征值λ的特征向量则A(k1α1+k2α2)=λ(k1α1+k2α2)所以k1Aα1+k2Aα2=k1λα1+k2λα2由已知,Aα1=λ1α1,Aα2=λ2α2所以k1