行列式为0时是否可以证明其线性相关

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/30 17:10:01
行列式为0时是否可以证明其线性相关
是不是只有当向量组维数与个数相同时才可以用求行列式的方法判断向量组是否线性相关?

是的,否则不能取行列式.n个n维向量线性相关的充分必要条件是它们构成的行列式等于0.

线性代数证明题 利用行列式的定义证明:若一个n阶行列式有n^2-n个以上的元素为0,则该行列式为0

根据抽屉原则,至少一行元素全为0行列式定义是所有不同行不同列的元素求积后累加而如果一行全为0,则上面每项都为0,所以行列式为0这是一个性质,但是这个性质只比定义多一步,你只要不直接用性质即可

在证明是否可以矩阵对角化过程中,利用定理n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量

定理:n阶矩阵A可以对角化的充要条件为A有n个线性无关特征向量k重特征值有k个线性无关的特征向量而对k重特征值λ,属于特征值λ的特征向量是齐次线性方程组(A-λE)x=0的非零解所以属于特征值λ的线性

线性代数 证明行列式为0,用性质证明

记原行列式为D,转置后行列式的值不变.所以D=0-a12-a13-a14-a15;a120-a23-a24-a25;a13a230-a34-a35;a14a24a340-a45;a15-25a35a4

如果A矩阵列向量线性相关那么A矩阵是否行向量也线性相关 由A列向量线性相关得出A的行列式为0

这个是不对的..你说的A的行列式为0,就默认了A是nxn的方阵了.可是A可以是mxn的一般矩阵啊.比如A是3x5的矩阵.且A的秩r(A)=3,那么A的五个列向量的秩为3,列向量必然是线性相关的.但是三

克莱姆法则/克拉默法则是充要的吗?即由n*n线性方程组有唯一解是否可以推出系数行列式不等于0?如何证明?

这个问题要换个思路记A=(a1,a2,...,an)则Ax=b有唯一解b可由a1,a2,...,an唯一线性表示由此可得a1,a2,...,an线性无关进而行列式|a1,a2,...,an|=|A|≠

A是n阶正交矩阵,若A的行列式为1,证明当n为奇数时,E—A的行列式为0

证明:由已知,AA'=E所以|E-A|=|AA'-A|=|A(A'-E)|=|A||A'-E|=1*|(A-E)'|=|A-E|=|-(E-A)|=(-1)^n|E-A|=-|E-A|.故|E-A|=

行列式不等于0可以怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

A行列式为0,证明伴随矩阵行列式也为0

用反证法.假设|A*|≠0,则A*可逆.由AA*=|A|E=0等式两边右乘A*的逆矩阵得A=0.所以A*=0所以|A*|=0.这与假设矛盾.故当|A|=0时,|A*|=0.

线性无关等价于gram行列式不等于0?怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

为什么非零矩阵对角线元素不全为0时,其行列式不为零?

没这结论A=111111111A为非零矩阵对角线元素不全为0,其行列式等于零再问:那请问这个方法二是什么意思?再问:再答:这说的很清楚了对角线上的元素都等于A的行列式

矩阵中如果有一行或一列的元素全为0,则其所对应的行列式的值为0.也就是说如果矩阵不是线性无关也就是不是满秩矩阵时,其所对

对,行列式为0的必要条件是行列式中向量线性相关,所以,在不满秩=奇异=不可逆再问:也就是可逆矩阵=非奇异矩阵=满秩矩阵==也就是线性无关矩阵,对吧谢谢再答:没错

矩阵A的行列式为0如何证明其伴随矩阵行列式也为0

看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发

行列式的性质设A 为n阶方阵,则行列式lAl =0 的必要条件是 A中必有一行(或列)为其行(列)的线性组合 是正确的

太简单了如果第m行(列)为{am1,am2,...,amn}第n行(列)为{kam1,kam2,...,kamn}那么根据行列式的性质,第m行(列)乘以k再乘以-1加到第n行(列),则第n行就变为{0

为什么证明线性无关只要其对应的行列式不等于0

不等于0,说明齐次线性方程组只有零解,说明只有全为零的数才能使得他们的线性组合等于0,因此线性无关

向量组线性相关与相应向量组组成的行列式为0之间的关系?

要求行列式必须是n个n维的向量.如果是这样就是充要条件了

已知二阶矩阵A的行列式为负数,证明A可以相似于对角阵.

结论仅对实矩阵成立,此时两个特征值不相等再问:那你到时证明一下实矩阵的呀?再答:不相等怎么证明再问:这是我们的作业题不会有错吧?再答:喂不管怎么样你采纳一下啊