矩阵设a=[],b=[],且|a|=2,|b|=-7则|a b|等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/07 17:32:40
矩阵设a=[],b=[],且|a|=2,|b|=-7则|a b|等于
设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵

写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而a

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0

因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

设A,B均为n阶矩阵,且AB=A+B,证明A,B可交换

证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.

设A是阶矩阵,且满足A^3=6E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1

因为A^3-6E=0所以A(A^2-2A+4E)+2A^2-4A-6E=0所以A(A^2-2A+4E)+2(A^2-2A+4E)-14E=0所以(A+2E)(A^2-2A+4E)=14E所以B=A^2

设A,B都是n阶矩阵,且(AB)^2=E,则必有 选3

还可能等于-1.再答:可以收藏我哦

设A,B为3阶矩阵,且|A|=3,|B|=2,计算行列式|-|B|A|的值

已知A,B为3阶矩阵,且|A|=3,|B|=2,于是|-|B|A|=[(-|B|)^3]|A|=[(-2)^3]×3=-8×3=-24(这里|-|B|A|=[(-|B|)^3]|A|利用了n阶矩阵C的

设A,B均为n阶矩阵,且AB=BA求证r(A+B)

这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A,B均为n阶矩阵,且AB=BA,证r(A+B)

不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0

因为A,B为正交矩阵,所以┃A┃┃A+B┃=┃A’┃┃A+B┃=┃E+A’B┃=┃B’B+A’B┃=┃B’+A’┃┃B┃=┃A+B┃B┃=-┃A┃┃A+B┃.所以┃A┃┃A+B┃=0.所以┃A+B┃=

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

高等代数题:设A和B都是非零矩阵,且AB=0.则

选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列

设A=(011 101 010)且6A+AB=B,求矩阵B

6A+AB=B于是6A=(-A+E)BB=(-A+E)^(-1)*6A=(1-1-1-1-10-11)^(-1)*6A下略.

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R

设矩阵A与矩阵B等价,且r(A)=n,则r(B)=多少?

存在可逆矩阵P、Q,使PAQ=B,则A与B等价,充要条件是A与B是同型矩阵且R(A)=R(B)=n

设A.B都是n级矩阵,且A+B=AB,求证:AB=BA

利用A-E与B-E的可逆性如图证明.经济数学团队帮你解答,请及时采纳.