f(t)=5 3t-2e-2t

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/05 07:24:42
f(t)=5 3t-2e-2t
(1/2)英语翻译:J u s t u s e t h i s r o o m f o r t h e t

Justusethisroomforthe不完整啊,这个房间仅仅用作……(后面是什么呢?)

设f(t)=∫e^(-x^2)dx,求∫tf(t)dt=?

letdF(x)=e^(-x^2)dxf(t)=∫(1->t^2)e^(-x^2)dx=F(t^2)-F(1)f'(t)=2tF'(t^2)=2te^(-t^4)∫(0->1)tf(t)dt=(1/2

已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0

已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0

已知t属于(0,1],f'(t)=2f(t)/2-t,则f(t)等于常数c除以(2-t)的平方?

这是一个可分离变量的一阶微分方程,原式化为f'(t)/f(t)=2/(2-t),两边积分得:ln|f(t)|=-2ln|2-t|+C1,即ln|f(t)|=ln(2-t)^(-2)+C1两边做指数运算

求函数f(t)=e∧-2t的拉氏变换

∫[e^(-2-s)t]dt=[1/(-2-s)]*∫[e^(-2-s)t]d(-2-s)=1/(s+2)

设f(x)=∫(1,x^2) e^(-t)/t dt,求∫(0,1)xf(x)dt

f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫

(t^2-2t^2-t+1)ε(t)= ; f(t-τ)*δ(t)=?; 若f(t)=2δ(t)+3τ^(-2τ)τ(t

f(t-1)-1=1-f(t)(t-1)^2-(t-1)+1-1=1-t^2-t+1t^2-2t+1-t+1=2-t^2-t2t^2+2t=0t(t+1)=0t=0或者t=-1

已知函数f(x)=(x^2-3x+3)*e^x定义域为[-2,t](t>-2)

g(X0)=X0^2-X0=2/3(t-1)^2作出图像知必有交点(-2,6)当t∈(-2,1)时,X0有1个t∈[1,+无穷)时有2个

f'(0)=2,当t无限趋近于0时,(f(3t)-f(t))/t无限趋近于?

由导数的定义可知,f'(0)=lim(t->0)[f(t)-f(0)]/(t-0)=lim(t->0)[f(t)-f(0)]/t,所以lim(t->0)[f(3t)-f(t)]/t=lim(t->0)

x=2t+cost y=t+e^t 求dy/dx

=(1+e^t)/(2-sint)不通,看书.

已知函数f(t)=log2(2-t)+√t_1求f(t)的定义域D

2-t>0t-1≥0解得,1≤t<2所以,定义域为D=[1,2)

高数题设x=(t+1)e^t,y=t^2*e^t,求d^2y/dx^2

参数方程求导:d^2y/dx^2=d[dy/dx]/dx=d[(dy/dt)/(dx/dt)]/dx=d[y'/x']/dt*dt/dx=(y''x'-y'x'')/x'^2*1/x'=(y''x'-

设函数f(x)=tx^2+2t^2*x+t^2+t+1/t-1(t>0),求f(x)的最小值h(t)

将函数求导得:f'(x)=2tx+2t^2最小值时,f'(x)=0,所以解得x=-t,将x=-t代入函数,可求出值

信号与系统.已知f(t)为因果信号,且f(t)*f'(t)=(1-t)e[-t在e的右上]ε(t),求f(t)

用拉普拉斯变换做,s[F(s)]^2=s/(s+1)/(s+1)F(s)=1/(s+1),f(t)=e^(-t)u(t)

已知f(t)=log2t,t∈[2

∵t∈[2,8],∴f(t)∈[12,3]原题转化为:m(x-2)+(x-2)2>0恒成立,为m的一次函数(这里思维的转化很重要)当x=2时,不等式不成立.∴x≠2.令g(m)=m(x-2)(x-2)

已知函数f(t)=-sin^2t+sint+a

1、0=-sin^2t+sint+a0=-(sin²t-sint+1/4-1/4-a)0=-[(sint-1/2)²-(1+4a)/4]0=-(sint-1/2)²+(1

f(x)=∫tan^2(e^(2t+1))dt+A,求f^(-1)(A)

当函数f(x)=∫tan^2(e^(2t+1))dt+A=A得到∫tan^2(e^(2t+1))dt=0因为tan^2(e^(2t+1))>=0所以只能是x=0所以f^(-1)(A)=0再问:sorr

怎么用拉氏变换求f(t)=tU(t-2)

此题实质为拉氏变换的性质运用,方法很多,可以用位移性质和微分性质处理.