如图所示,在同一竖直平面内,一轻质弹簧静置放于光滑水平面上.

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/08 21:07:00
如图所示,在同一竖直平面内,一轻质弹簧静置放于光滑水平面上.
9、如图所示,竖直平面内固定有一个半径为R的光滑圆弧轨道,其端点P在圆心O的正上方,另一个端点Q与圆心O在同一水平面上.

Q点和P点的位置决定了这个圆弧轨道是一个扇形轨道(1/4圆),想想也知道不可能飞回到Q点的.因为P点到圆心和Q点到圆心的直线是垂直的,小球飞出的时候,应该是垂直于圆弧法线的,如果垂直于法线,怎么可能飞

如图所示,一固定在竖直平面内的光滑半圆形轨道ABC在C处与水平地面相切,轨道半径R=0.5m.

我还是给你讲思路吧.你看,小球从A点抛出时将做平抛运动,水平位移CD=1.AC高为h=1m由h=1/2gt2算出时间t.再由s=vt算出小球通过A点时的速度.再由能量守恒算出C点的速度.然后有知道摩擦

24,如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,

(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m

如图所示,用细绳拴一小球,若使小球在竖直平面内做圆周运动,则关于小球的受力情况,下列说法正确的是(  )

A、小球受重力和拉力两个力作用,向心力不是受到的力,而是做圆周运动所需要的力,靠其它力来提供.故A、C错误,B正确.   D、小球在竖直平面内做圆周运动,靠沿半径方向上的

如图所示,一闭合矩形线圈与一条形磁铁在同一平面内,线圈可绕竖直轴自由转动.当条形磁铁绕中心O转动时,其N极转向纸外,S极

选D.当磁铁转动时,线圈内【向里的磁感线】增加,为了抵抗【向里的磁感线】,线圈产生了逆时针的电流.此时,【有逆时针电流的线圈】就相当于一个【N极向外的小磁针】,【N极向外的小磁针】受到【磁铁】的磁场力

如图所示,小球Q在竖直平面内做匀速圆周运动,半径为r,当Q球运动到与O在同一水平线上时,有另一小球P在圆面内距圆周最高点

由自由落体运动的位移公式h=12gt2,可求得小球P自由下落至圆周最高点的时间t1=2hg.①设小球Q做匀速圆周运动的周期为T,则有T=2πω,②由题意知,小球Q由图示位置至圆周最高点所用的时间t2=

如图所示,在水平方向的匀强电场中,一初速度为v0的带电微粒沿着竖直平面内的直

什么东西啊1.如图1所示,空间有一竖直方向的匀强电场,初速度为v0的带正电小球从A点射入电场这个?

一根长导线弯曲成如图所示形状,通以直流电I,正中间用绝缘线悬挂一金属环C,环与导线处于同一竖直平面内.在电流I增大的过程

根据安培定则知,弯曲成“п”导线中电流的磁场方向为:垂直纸面向里,且大小增加.由楞次定律可知,感应电流的方向为逆时针,根据左手定则可知,安培力的方向指向圆心,由于弯曲成是“п”导线,所以金属环所在的区

(2013•闸北区一模)如图所示,OB杆长L,质量不计,在竖直平面内绕O轴转动.杆上每隔L2

在转动过程中,A、B两球的角速度相同,设A球的速度为vA,B球的速度为vB,则有vA=12vB   ①以A、B和杆组成的系统机械能守恒,由机械能守恒定律,并选最低点为零势

如图所示,四根等长的铝管和铁块(其中C中铝管不闭合,其他两根铝管和铁管均闭合)竖直放置在同一竖直平面内,分别将磁

解题思路:当磁铁下落时,若是闭合电路,则会产生感应电流从而阻碍磁铁的运动,而其它情况都是自由落体运动,从而根据位移与时间的关系,即可求解.解题过程:解:由题意可知,只有A磁铁在下落时,导致铝管内的磁通

如图所示,一足够长的倾角为45°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC在同一竖直平面内平滑相接,O为半圆

(1)A到D过程:根据动能定理有A到D过程:根据动能定理有mg×(2R-R)-μmgcos45°×2R/(sin45°)可求:μ=0.5(2)若滑块恰能到达C点,根据牛顿第二定律有mg=MV²

如图所示,半径分别为R和r(R>r)的甲、乙两光滑半圆轨道放置在同一竖直平面内,两轨道之间由一光滑水平轨道CD相连,在水

A、小球恰好能通过最高点,在最高点,由重力提供向心力,设最高点的速度为v,则有: mg=mv2R,解得:v=gR则半径越大,到达最高点的动能越大,而两球初动能相等,其中有一只小球恰好能通过最

如图所示,一内壁光滑的3/4圆管处于竖直平面内,

设圆半径为R,取A的重力势能为零从离A点h1处释放,小球恰能到达C处,则小球到C处是速度恰好为零,从A到C,由机械能守恒可得:mgh1=mgR,解得:h1=R①当从离A点h2处释放,小球从C点平抛恰好

如图所示,在同一竖直平面内有两个正对着的相同半圆形光滑轨道,相隔一定的距离

依机械能守恒定律:1/2mVb^2=1/2mVa^2+mg(2R+x);----------(1)依牛顿第二定律:Nb=mg+mVb^2/RNa=-mg+mVa^2/R所以DeltaF=Nb-Na=2

如图所示,两个同心圆环 A、B 置于同一竖直平面内,A 环的半径大于 B 环的半径.将一条形磁铁水平插入两环的圆心处,则

因为磁通量是穿过某面积的磁感线条数注意:磁感线是有方向的,而这个磁感线条数是两个做差之后的数目.又因为磁感线是闭合的所以,当磁铁穿过圆心时,磁铁内的磁感线都穿过线圈,但磁铁外部与内部方向相反这样,当线

如图所示,两光滑圆轨道放置在同一竖直平面内,半径均为R,两轨道之间由一光滑水平轨道相连,在水平轨道上有一轻弹簧被a、b两

设a、b球被弹簧弹开的瞬时速度为、,,故当b球恰能通过最高点时,a球能通过最高点。此时弹簧弹性势能最小。设b球恰能达到最高点的速度为vb,对于b球,由机械能守恒定律可得所以弹性势能最小值是由以上各式解

如图所示,一质量为0.5kg的小球,用0.4m长的细线拴住在竖直平面内作圆周运动,求:

(1)在最高点,根据牛顿第二定律得:F1+mg=mv12L解得:F1=mv12L−mg=0.5×160.4−5N=15N.(2)在最低点,根据牛顿第二定律得:F2−mg=mv22L,解得:F2=mg+

如图所示,某轻杆一端固定一质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动

机械能守恒,机械能等于动能加势能,将最低点看作0势能面无外力作用下如你的图所示,只要球有质量就必须有能使它到达最高点的能,也就是说最低点时动能>0,速度>0.杆对球作用力也必须大于球重力,否则就无法维

如图所示,单摆在竖直平面内左右摆动,滚摆在竖直平面内上下往复运动.请回答:

摆球或滚摆在下落的过程中:质量不变,所处高度减小重力势能减小,但速度增大动能增大,正是减少的重力势能转化为了动能.摆球或滚摆在上升的过程中:质量不变,速度减小动能减小,但所处高度增大重力势能增大,正是