余项无穷小

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/30 18:49:38
余项无穷小
高阶无穷小与无穷小的关系

高阶无穷小在x趋于x0时与无穷小比值为0

无穷小证明... 

再答:亲,我的回答你满意吗?给个好评吧,或者你可以继续问我哦

无穷小乘以无穷大是多少?无穷小+无穷大是多少?

无穷小+无穷大仍是无穷大无穷小乘以无穷大没有意义(如果有式子会出现无穷小乘以无穷大的形式,不能直接求极限,必须要先化成有意义的形式比如1/x*x(x→∞),要先化成有意义的形式,1/x*x=1.之后才

无穷大*无穷小+?

举个例子吧,当x=+∞时可不可以认为1/x是无穷小?如果可以x*(1/x)=1;但是当x=+∞时,(x*x)亦是无穷大,那么(x*x)*(1/x)=x=无穷大;同样的1/(x*x)可以看作无穷小,那么

两个无穷小相减是无穷小吗

根据定义:两个无穷小的和为无穷小.而根据三角不等式,两个无穷小的差的绝对值小于等于它们的和.根据定义,两个无穷小的差也是无穷小.

加减项的等价无穷小在什么条件下能用等价无穷小替换?

加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的.用泰勒公式求极限就是基于这种思想.举一个例子让你明白:求当x→0时,(tanx-sinx)/(x^3)的极限.用

无穷小除以无穷小是什么,是有可能是无穷小还是什么

可以是无穷大、无穷小、或任意数.

高数题求无穷大还是无穷小

这是无穷小,x^2→0是无穷小|3-sin(1/x)|≤4是有界函数.所以,f(x)是无穷小

常用的等价无穷小

sinx~xtanx~x1-cosx~x^2/2secx-1~x^2/2ln(1+x)~xe^x-1~x(1+x)^a~ax(a不等于0)arcsinx~xarctanx~x

等价无穷小对吗 

那是x趋于pi,不是0啊~再问:我知道了

微积分-无穷小是几阶无穷小的题

第一题照你那个答案问题应该是问是x的几阶无穷小也就是x趋于0正时2(x^1/2)+x+x^2与x的多少次幂的比值是个常数第二题同理用等价无穷小代换一下tan2x-2xsin3x-3x所以是x的2阶无穷

无穷大乘以无穷小等于无穷小吗

能不能认为类似于(+99999999999999999999999...)*(-999999999999999999999999...)=(-89999999999999999999999999999

常用等价无穷小

X趋向于0时:sinx,tanx,arcsinx,arctanx,ln(1+x),e^x-1.a^x-1~xlna(a>o,a不等于1)1-cosx~(1/2)x^2(1+ax)^b-1~abx[n次

高数中无穷小除以无穷小的结果是什么

可以是任何数,或不存在.

无穷小减无穷小等于无穷小嘛

无穷小.@令v(x)=A-f(x),则f(x)=A-v(x),且lim(x->x0)v(x)=0,即函数值等于其极限值减无穷小.@

同一项的高阶无穷小相减还等于那个项的高阶无穷小吗?比如o(x^3)-o(x^3)=o(x^3)?

这个就不一定了比如2x,x是同阶的无穷小量2x-x=x还是同阶的但是xsinx也是同阶的,但是X-sinx就是o(x^3)了

泰勒公式 展开项中 高阶无穷小问题

一般o(x)中的次数和前面项的最高次相等即可但主要还要看分母k是多少k阶无穷小概念是lim(x->0)A/B=cc为非零常数泰勒公式要展开到几次要看底数x^k的k为多少比如这道题lim(x->0)[l

泰勒公式余项的题目这个无穷小的阶数是怎么确定的?我怎么算的和答案的不一样,ln(1-x^2)的2阶余项不应该是o(x^2

无穷小的阶,就是告诉你,这个项比前面的项小得多.sin(x)=x-x^3/6+o(x^3)这个式子的意义是说,只能确定地知道sin(x)的前面2项,后面的项我不知道了,但是后面的项比前面的项小得多,因